U torial 4: Selected Problims of Assignment 4.1

Leon Li

 $10/10/2018$

(1) HWI - HW ⁴ are marked and are ready to pick up .

2) Extra of fice hour for Min term! Is Oct (I hurs) $14:00 - 17:0$

Hölder's and Minkowski's Inequalities
\n(1) Euclidean space version:
$$
X = R^n
$$
: $\forall p \ge 1$, define P-norm
\n $||\cdot||_p: X \rightarrow R$ by $\alpha = (a_1, ..., a_n) \mapsto ||a||_p := (\sum_{k=1}^{\infty} |a_k|^p)^{\frac{1}{p}}$
\n(a) Hölder's inequality: $\forall p, q > 1 \land \sqrt{\frac{1}{p} + \frac{1}{q}} = 1$, $\forall a, b \in X$.
\n $||a \cdot b||_1 \le ||a||_2 \le ||a||_p ||b||_q$
\n(b) Minkowski's inequality: $\forall p \ge 1$, $\forall a, b \in X$.
\n $||a + b||_p \le ||a||_p + ||b||_p$
\n $lim(x_1, ..., x_n, b_n)$
\n $||a + b||_p \le ||a||_p + ||b||_p$
\n $lim(x_2, ..., x_n, b_n)$
\n $||a + b||_p \le ||a||_p + ||b||_p$
\n $lim(x_3, ..., x_n, b_n)$
\n $lim(x_4, ..., x_n, b_n)$
\n $lim(x_5, ..., x_n, b_n)$
\n $lim(x_6, ..., x_n, b_n)$
\n $lim(x_7, ..., x_n, b_n)$
\n $lim(x_8, ..., x_n, b_n)$
\n $lim(x_9, ..., x_n, b_n)$
\n $lim(x_9, ..., x_n, b_n)$
\n $lim(x_1, ..., x_n, b_n)$
\n $lim(x_9, ..., x_n, b_n)$
\n lim

(a) $f \mid \langle P \rangle < +\infty$, define $\int_{1}^{P} := \{ (a_{n})_{n=1}^{\infty} a_{n} \in \mathbb{R} : \sum_{n=1}^{\infty} a_{n} ^{P} < +\infty \}$
(a) $f \mid \langle P \rangle < +\infty$, define $\int_{1}^{P} := \{ (a_{n})_{n=1}^{\infty} a_{n} \in \mathbb{R} : \sum_{n=1}^{\infty} a_{n} ^{P} < +\infty \}$
(b) $p = +\infty$: define $\int_{1}^{\infty} := \{ (a_{n})_{n=1}^{\infty} a_{n} \in \mathbb{R} : \sup_{n=1} a_{n} ^{P} \}$
(c) $p = +\infty$: define $\int_{1}^{\infty} := \{ (a_{n})_{n=1}^{\infty} a_{n} \in \mathbb{R} : \sup_{n} a_{n} < +\infty \}$
(d) $a = (a_{n}) \implies a _{\infty} := \sup_{n} a_{n} $
(e) $a = (a_{n}) \implies a _{\infty} := \sup_{n} a_{n} $
(f) $a = (a_{n}) \implies a _{\infty} := \sup_{n} a_{n} $
(g) $n: (a) Check the axioms [N1]-[N3] for normal spaces:$
[N1]: $\forall a \in \mathbb{R} : a _{P} = \left(\sum_{n=1}^{\infty} a_{n} ^{P}\right)^{\frac{1}{P}} \geq 0$, which
[=0) holds $\iff \forall n: a_{n} = 0 \iff a = 0$
[N2]: <math display="</td>

11.
$$
1 \times 1 \times 1
$$
 (a, b) 0 (b) 0 (c) 0 (d) 0 (e) 0 (f) 0 (h) 0 (i) 0 (j) 0 (k) 0 (l) 0 (l)

$Q2)$ $(E_X 4 Q6)$

Under same notations as in $Q1$, show that $50r$ $0 < p < 1$ (l^P . II.II_P) is NOT a normed space. S_0 : Showing [N3] is false: Churse $\alpha = (1, 0, \cdots)$; b=(0,1,0,...) then $||a||_p = 1 = ||b||_p$; $||a+b||_p = (1^p+1^p)^{\frac{1}{p}} = 2^{\frac{1}{p}}$ \therefore $0 < p < 1 \Rightarrow ||a+ b||_p = 2^{\frac{1}{p}} > 2 = ||a||_p + ||b||_p$. [N3] is false, hence $(l^P, || \cdot ||_P)$ is NOT a normed space. Rmk: Exactly the same argument shows that \forall n>2, \forall 0<p<1, $\left(\mathbb{R}^n, \|\cdot\|_p\right)$ is NOT a normed space.

(32)
$$
(E_{x}.5, Q2)
$$

\nLet $X = C[a,b]$ be the space of continuous functions on [a,b].
\n $Y p \ge 1$, $||\cdot||_{p}: C[a,b] \subseteq R[a,b] \rightarrow \mathbb{R}$ defined as in (II)
\n $(E_{\text{Exercise}}: (X, ||\cdot||_{p})$ is a normal space)
\nand $d_{p}: X \times Y \rightarrow \mathbb{R}$ be the induced metric.
\nShow that $\forall p>1$, d_{p} is strongur but inequivalent to d_{1} .
\nSo[: (1) d_{p} is stronger than $d_{1}: \forall f,g \in X$,
\n $d_{1}(f,g) = ||f-g||_{1} = ||(f-g) \cdot 1||_{1} \le ||f-g||_{p} \cdot ||1||_{1}$ (by IIa)
\n $= C d_{p}(f,g)$, where $C = ||1||_{q} = (b-a)^{\frac{1}{q}}$.
\n(2) d_{p} is inequivalent to $d_{1}: \text{ suppose on the contour, they one equivalent, then}\n $\exists C \in \mathbb{R}$ s.t. $\forall (f_{n}) \subseteq X$, $\forall n$, $C d_{p}(f_{n},0) \le d_{1}(f_{n},0) \le C d_{p}(f_{n},0)$
\n $\{e \in C ||f_{n}||_{p} \le ||f_{n}||_{1} \le C ||f_{n}||_{p}$
\nHowever, we will construct (f_{n}) s.t. $||f_{n}||_{p} \Rightarrow \infty$ and $||f_{n}||_{1} \rightarrow 0$
\nwhich is a contradiction, so d_{p} is hequivalent to d_{1} .$

Constructing
$$
(f_n)
$$
: (for simplicity assume $[a,b] = [0,1]$)

\nFix $\frac{1}{p} \leq \alpha \leq 1$, define $f_n : [0,1] \rightarrow \mathbb{R}$ by

\n
$$
f_n(x) = \begin{cases} -n^{4n}x + n^d, & x \in [0, \frac{1}{n}] \\ 0, & x \in [\frac{1}{n}, 1] \end{cases}
$$
\nthen

\n
$$
||f_n||_1 = \int_0^{\frac{1}{n}} (-n^{4n}x + n^d) dx = n^d \int_0^{\frac{1}{n}} (1 - nx) dx = n^d \left[\frac{(1 - nx)^d}{2n} \right]_0^{\frac{1}{n}}
$$
\n
$$
= n^d \cdot (\frac{1}{2}n) = \frac{1}{2} n^{d-1} \rightarrow 0 \text{ as } n \rightarrow \infty \quad (\because d < 1)
$$
\nbut

\n
$$
||f_n||_p)^p = \int_0^{\frac{1}{n}} (-n^{4n}x + n^d)^p dx = n^{d^p} \left[-\frac{(1 - nx)^{d^q}}{(p+1)n} \right]_0^{\frac{1}{n}}
$$
\n
$$
= n^{d^p} \cdot (\frac{1}{q+1)n} = \frac{1}{p+1} n^{d^{p-1}} \rightarrow +\infty \text{ as } n \rightarrow \infty \quad (\because d > \frac{1}{p})
$$
\nThus

\n
$$
(f_n) \text{ is the desired countoreexample.}
$$